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 ‘Introduction to Database Concepts’ 

Definitions & Concepts: 

A database is a collection of data that is organized and stored according to some purpose. 

The database is organized into tables (which look like HTML tables or spreadsheets). Each 

table stores data about some real-world entity. 

Each table is organized into rows and columns. 

Each row in the table is a record, which usually corresponds to a one real-world object (like 

an animal or a car or an archival document). 

A record can contain several pieces of information. A column (sometimes called an attribute 

or a field) corresponds to one of those pieces of information. They are often adjectives. 

A relational database (as opposed to a “flat-file database”) is very good at relating (that is, 

matching up) information stored in one table to information stored in another table by looking 

for elements common to each of them. 

A primary key is a special column in a table whose values (perhaps numbers, perhaps 

names) are unique within that column. A primary key has three qualities: 1) it is unique 

across all records in the table; 2) it has a non-NULL value for each record in the table for the 

entire lifetime of the record; 3) its value never changes during the lifetime of the record. 

A foreign key is a value in a table that is a primary key from a different table. Foreign keys 

need not be unique. Foreign keys make relational databases possible. 

General Design Principles: 

1. Store only one piece of information in each field. What counts as “one piece of 

information” will depend on the purpose of your database. Generally speaking, though, no 

groups, lists, or comma-separated values! 

2. Store each piece of data in only one place. If you’re finding the same name or value 

typed out again and again in different places, then you need to create a new table, store that 

data there, assign it a primary key, and use foreign keys elsewhere in the database. 

3. Do not store anything that you can calculate. Do not store dynamically changing data, 

such as the number of days until you graduate or someone’s age; store a birthday instead. 

4. Design tables so that adding new information creates new rows (records), not new  

columns. 

5. Design tables to contain as few NULL values as possible. If you notice lots of NULL 

values (or even lots of repeated values) your table probably needs further normalization. 



Data Modeling Strategies: 

1. Real-world entities, which may be range from the concrete (baseball cards, pets, 

contracts) to the abstract (friends, genres, rankings), become tables in the database. Entities 

are often nouns. 

2. An entity’s attributes (or qualities or properties or identifiers) become columns in its 

table. Attributes are often adjectives. Choose an appropriate data type for each column. 

3. Specific instances of an entity become rows or records in the table. Whereas person is an 

entity and therefore signifies a table, Bob and Sue and Jim are specific instances and so are 

represented by individual records in the table. 

4. Unique attributes (identifiers) become primary keys. Interestingly, most entities do not 

naturally have unique identifiers (there are a lot of Jim Smiths in the world, for example), so 

most of the time we just assign arbitrary sequences of numbers as primary keys. Sometimes 

users are fully aware of their primary keys (student numbers, social insurance or social 

security numbers, etc.), but many times users never know their primary keys. Primary keys 

are not always public information. 

5. When stored in another table, a primary key is known as a foreign key. Relationships in 

the database are modeled using foreign keys. 

Data Normalization Principles 

The classic definition of a database is that it’s a collection of data that is organized and stored 

according to some purpose. That sounds pretty vague and you might think that a definition 

like that opens the door for a chaotic data-driven free-for-all. Not so, in practice. 

There are indeed some best practices when it comes to organizing data in a database. And we 

have Raymond F. Boyce and Edgar F. Codd to thank for that. The system they developed is 

sometimes called Boyce-Codd Normal Form or BCNF for short. (Knowing that is a great 

icebreaker at parties. Try it. You’ll see.) 

Those principles are actually defined in mathematical terms, though. Knowing that fact might 

come in handy if you’re ever captured by space alien geniuses and your freedom hinges on 

your ability to provide a demonstrable proof that SQL (Structured Query Language) works 

and that any well-structured query is indeed guaranteed to give you the right answer. If 

you’re just learning databases, though, the technical definitions of data normalization forms 

don’t help at all. 

So here’s the shortcut. Quamen’s over-simplified and metaphoric approach to data 

normalization: 

Step 1. Nouns 

Step 2. Relationships 

Step 3. Adjectives 



 

Step 1. Create a separate table for each entity in your data. 

Entities are usually real-world objects like birds, employees, cars, concerts, contracts, or 

events. Any important noun in a prose description of your dataset is probably an entity and 

should therefore get its own table. 

Achieving so-called first normal form (1NF) really involves striving for these three goals: 

1. There are no duplicated rows in the table. Each concrete instance of your entity occupies 

one and only one row. Each row should have some kind of unique identifier, which we call a 

primary key. Sometimes the dataset provides us with a good primary key but, if not, we can 

always invent one (usually an arbitrary but linear sequence of numbers). 

2. Each cell (or field) contains only one value. There should no groups of data or comma-

separated lists of data in any given cell. 

3. Any given column contains the same kind of data. For example, avoid illicit mixing in one 

column of phone numbers and email addresses. Those should be two separate columns. 

Step 2. Move to new tables any repetitive information in your existing entity tables. 

After you’ve created an entity table, take it out for a test drive by filling it with some sample 

data. Look for information that gets repeated from row to row—data bits like addresses, 

course titles, names of bosses or instructors, dinner courses, authors of books, museum or 

archive names, event venues, movie genres, university names, information categories, 

building names, etc. These repeated bits of information should now be moved into their own 

tables. Often, they represent “sub-entities” that we simply didn’t recognize as being important 

in Step 1. That’s OK. That’s why we have a Step 2. 

More examples: Shakespeare’s plays are often classified as comedies, histories or tragedies. 

Many different movies were all directed by Martin Scorsese. An interesting group of 

countries are all located in Europe. Animals are classified into reptiles, amphibians, birds, 

mammals. Your personal library probably has many books by the same publisher. 

Moving repetitive information into new tables should suggest to you that those new tables 

need to go through the data normalization process as well. Repeat the process on those tables: 

ensure row and column consistency, guarantee row uniqueness with a primary key, etc. 

And in order to maintain the relationship between the old, original entity and this new one 

that you’ve just created, you should store the new table’s primary key back in the original 

table as a foreign key. And, for me, that’s the gist of second normal form (2NF): the creation 

of relationships between entities. Databases model relationships with a system of primary 

keys and foreign keys. 

Data relationships are classically divided into three varieties: one-to-one, one-to-many, and 

many-to-many. The more you know about modeling data relationships, the easier 2NF 



becomes. There are enough subtleties about relationships, though, that they warrant their own 

discussion. Check out the section on “Relationships” for more details. 

Step 3. Make sure all table columns are fully dependent upon the table’s primary key. 

This rule is really about the consistency and integrity of data. The relationship between any 

given column and its table should be analogous to the relationship between an adjective and 

its noun. Any columns in your tables that don’t contribute like adjectives probably need to be 

moved elsewhere. Any columns whose values could “go stale” over time (that is to say, that 

simply become incorrect over time) should be reconceptualized. 

Here are a few common litmus tests: 

1. If we delete a row, will we lose any data that other records might need? 

If (or when) we delete Paris Hilton’s autobiography from the library database, will we also 

lose the fact that autobiographies are housed in Johnson Library? If we delete dinner course 

#2 from the meal database, do we also lose track of which one is the salad fork? When Babe 

Ruth got traded to the Yankees, did we also accidentally lose the fact that the Red Sox play in 

Boston? 

2. If we add a row, could we accidentally make any data entry mistakes that would 

compromise our database’s integrity? 

When we inevitably add Paris Hilton’s autobiography back into the library database, could 

we accidentally record the mistake that autobiographies are housed in Campbell Library 

instead of Johnson Library? When we add a new course to the ambassador’s fancy dinner 

party, do we need to know which one is the salad fork? When we logged the Babe Ruth trade, 

did we mistakenly assign him to Chicago because misspelling the word socks is weird enough 

that surely only one team would do it? 

3. Have we stored any values that we should calculate instead? 

Don’t store someone’s age; store a birthdate. We can always calculate a person’s age on-the-

fly when we need to know it. Don’t store the average price of bananas; store all the prices of 

bananas and then calculate today’s average price. Don’t store the highest and lowest test 

scores; calculate them. Don’t store the number of baseball trades so far this year; count them. 

If the answer to any of those litmus test questions is “yes,” then you should either move the 

problematic information to a new table or else (in the case that your data can accidentally go 

stale) try to decide how to store it in such a way that it doesn’t implicitly have a “best before” 

date stamped on its forehead. 

Reading the technical details about data normalization can turn you into a shark—you feel 

that you have to keep moving or else your eyes will roll back in your head and you’ll die 

from lack of oxygen. That’s because data normalization is, in its most fundamental form, 

about mathematical proof. And most of us don’t care about the mathematics or the implicit 

guarantees about truthiness that math can provide. 



Rather, we’re interested in the heuristics—rules of thumb—and the “best practices” about 

how to create database tables effectively. The guidelines above simply translate mathematical 

concepts like functional and transitive dependencies into more metaphoric terms like 

relationships and adjectives. 

Data normalization—especially the 2NF step—gets easier when you know more about how 

databases handle relationships between tables. Read on, MacDuff. 

Relationships 

synonyms: connected, associated, linked, coupled, allied,affiliated, 

corresponding, kindred, parallel, be relevant to, pertain to, concerned 

with, having a bearing on, appertain to, involved with, pertinent to, 

have a rapport with, identify with . . . 

Database people talk about relationships between entities as if they’re obvious and self-

evident. And maybe they are. But when I’m working on a new database design, I inevitably 

run through a list of synonyms for the term “relationship” as I try to wrangle my data into 

patterns. 

The heart of a database relationship is that two different real-world entities are somehow 

linked or affiliated with one another. British Columbia is located in Canada, even though the 

province and the country are different entities and either can be discussed without reference 

to the other. John Lennon still has a connection to the Beatles even though neither entity, 

unfortunately, has survived. No matter how you say it, Uranus is still funny. 

Despite the complexity of real-world relationships, though, databases model relationships as 

a connection between two tables using primary and foreign keys. That simplicity is perhaps 

why database people think relationships are self-evident. Nonetheless, database designers 

classify the relationship between entities into three types: 

relationship description examples 

one-to-one one X has only one Y 

• a person has one social insurance 

number 

• a building has one address 

one-to-many one X has many Y’s 

• a country has many cities 

• a student takes many classes 

 

many-to-many many X’s have many Y’s 

• many different bands play at 

many different venues 

• many mythbusters bust many 

myths 

One-to-One Relationships 

A one-to-one relationship says that each entity of type X is connected to only one entity of 

type Y. For example, each person has one social insurance (or “social security”) number. 



Each student at a university has one identification number. Each class at the university has 

only one section identifier. Each automobile has one license plate number. 

If we were to model that in a database, we’d draw a picture like this: 

 

Here, each rectangle represents a table and the horizontal line represents a relationship 

between them. It’s a single line—it doesn’t branch or divide—so we will interpret that type of 

line as a one relationship. Database people would say that its cardinality is one. Here, the line 

is one on both sides, and so this diagram suggests that the relationship between class and 

section number is one-to-one. 

In the database, we’d model that relationship by taking the primary key from one of the 

entities (say, section_number) and putting it into the class table as a foreign key. And 

anytime we want to discover the section number of any given class, we’ll retrieve the foreign 

key, look across to the section_number table, and learn the section number. 

 

Here’s the dilemma. There’s no reason why we couldn’t simply store the section number 

directly in the class table. There’s no need here for a relationship at all. The introduction of 

foreign keys unnecessarily complicates an otherwise simple and straightforward table design. 

So the best practice in this case is to remove the section_number table entirely and move its 

data into the class table. 

The table below is not only a better solution to this particular problem, but it’s the best way to 

handle almost all one-to-one relationships. I’m not prepared to say that distributing a one-to-

one relationship across multiple tables is always wrong, but it’s uncommon enough that if 

you’re tempted to do it, you should sit down over a nice beverage and contemplate the 

maneuver. 

Our revised table looks like this: 

 

 



 

One-to-Many Relationships 

A one-to-many relationship says that each entity of type X has many entities of type Y. A 

country has many cities. A store sells many products. A person has many ancestors. When 

diagramming a one-to-many relationship, we use a line that branches on the end, sometimes 

called a “crow’s foot.” The crow’s foot signifies the many side of a relationship: 

 

To read one of these diagrams, we read across from the table name to the shape of the line on 

the opposite end. It’s not obvious, but we ignore shape of the line at its beginning (here, 

where it connects to the country table). Going left to right, then, we read, “a country has 

many cities”: 

 

In the other direction, going from right to left, again we ignore the shape of the line at its 

beginning. We read the name of the table and read leftwards to the shape of the line at its 

finish: “a city has one country”: 

 

Using the diagram, we can now build tables to hold that data. One rule of thumb when 

building tables from these kinds of diagrams is that the foreign key gets stored on the crow’s 

foot side of the relationship. Here, that means that we’ll take the primary key from the 

country table and stash it into the city table as a foreign key: 

 

Although it’s common to use a sequence of integers as primary keys, in this case I’ve used 

the two-letter country codes from the International Organization for Standardization 

(http://www.iso.org/iso/country_codes/iso_3166_code_lists.htm). These two-letter codes are 

guaranteed to be unique for all countries in the world, so they work perfectly well as primary 

keys. 



 

Many-to-Many Relationships 

In order to elaborate all the baroque subtleties of the many-to-many relationship, I’d like to 

work through three illuminating examples: 1) Many mythbusters bust many myths; 2) A pint 

of beer is a many-to-many relationship; and 3) a thesaurus. 

Example 1: Many mythbusters bust many myths. 

The popular Discovery Channel show, Mythbusters—hosted by Jamie Hyneman, Adam 

Savage, Tory Belleci, Kari Byron and Grant Imahara—puts urban myths to the test on a 

weekly basis. The hosts generally split into two teams to do their busting and so no one 

mythbuster ever works solo. Sometimes one episode busts several myths and so we have here 

the classic structure of a many-to-many relationship: many mythbusters bust many myths and 

many myths are busted by many mythbusters. 

 

Let’s build some tables and follow our one-to-many strategy of stashing foreign keys on the 

many side. Since we have here two tables with many relationships, we’ll just pick one at 

random: 

 

Hmmmm. Not good. Since every mythbuster has worked on so many myths, we end up with 

a column that’s just a comma-separated list of myths busted. We have the same problem even 

if we flip the responsibility of holding the foreign keys to the other table: 

 

Clearly, the rule of thumb that got us through the one-to-many examples is failing. Or is it? 

What if we could put another table in the middle? Wouldn’t we break the many-to-many 

down into two one-to-many relationships? Yes, we would: 



 

That middle table is called a junction table and its role is to help manage many-to-many 

relationships. In its simplest form, it’s merely a 2-column stash of foreign keys (remember 

the rule: put the foreign key where the crow’s foot is) but that’s all we need in order to create 

two one-to-many relationships. In the process, it allows us to convert our comma-separated 

lists into individual table rows, which is one of the goals of data normalization. 

 

In this case, our junction table does not represent any recognizable real-world entity, but it 

still needs a name. One common strategy is to combine the names of the two tables it’s 

joining and so I’ve called this junction table buster_myth. 

You can call it anything you want, but just calling it junction_table is less descriptive than 

you’d want, especially if your database ends up with a bunch of these. Trying to decipher the 

difference between junction_table_1, junction_table_2 and junction_table_3 isn’t 

something you want to do late at night. 

Example 2: A pint of beer is a many-to-many relationship. 

The junction table in our last example did not correspond to a real-world entity, but that’s not 

always the case. In fact, that’s not even the case most of the time. We see entities all around 

us every day that function as real-world junction tables. A pint of beer is just such a thing. 

Let’s imagine that Arthur, John and Georg hit the pub. Arthur like stouts, John prefers British 

bitters and Georg opts for German wheat beers. As the evening progresses, the gentlemen’s 

minds expand, and they begin trying each other’s brews. The result is a classic many-to-many 

relationship: many tipplers try many beers, and many beers were tried by many tipplers. 

 

But because a pint is a real-world entity, we can store more information in our table than just 

foreign keys. Of course, the pint table still functions as a junction table, but its real-world 

existence means that we will probably think of it more as an entity than as a junction table. 



Here’s what our tables might look like:  

 

We could store much more information on our pint table: the pub, the date and time, a beer 

review. The pint table transcends its lowly role as a junction table. It might even become the 

centrepiece of the whole database, containing more data and more columns than all the other 

tables combined. 

Real-world entities act as junction tables all the time. A restaurant review manages a many-

to-many relationship between restaurants and critics. A bird sighting table identifies a many-

to-many relationship between people and birds. A movie enacts a many-to-many relationship 

between actors and directors. 

Example 3: A thesaurus articulates a many-to-many relationship between words and 

other words. 

The classic many-to-many relationship elaborates a relationship between three tables in the 

database. But in certain circumstances, a junction table can manage a many-to-many 

relationship with only one other table. A thesaurus is a good example. The thesaurus plucks a 

word from the dictionary (relationship, for instance) and points to other words elsewhere in 

the dictionary that mean roughly the same thing (connected, associated, linked, coupled, 

allied, affiliated, etc.)  

 

 



One of the interesting decisions to make here is whether the relationship between words and 

their synonyms are one-way (“asymmetrical”) or two-way (“symmetrical”). It makes sense 

that if affiliated is a synonym for relationship, then relationship must automatically be a 

synonym for affiliated too. That’s a symmetrical relationship. In other words, the database 

designer needs to determine whether the one row (7, 1) is sufficient to cover both cases or 

whether the reverse, (1, 7), needs to be entered as well. 

The best decision is probably to let the relationship work both ways. That makes the table 

smaller – half the size it would be otherwise, obviously. But that decision introduces new 

problems as well: any attempt to insert the pair (1, 7) into thesaurus should fail because (7, 1) 

is already there. And there’s not a wholly elegant way to solve that problem. 

To begin, though, you could add a multi-column unique index to the thesaurus table, but that 

prevents only new entries that are in the same order as a row already existing in the table. 

Unfortunately, you can still enter those values if you reverse the order. You could solve this 

dilemma by always sorting the two foreign keys so that the smallest number goes into the 

lefthand column and the larger number goes into the righthand column. (We can discount 

cases where the two numbers are the same because we probably don’t want to log the fact 

that a word is its own synonym.) Sorting the numbers is a bit of extra work, but in tandem 

with the unique index, sorting the values before inserting would successfully prevent multiple 

entries in the table. 

Relationships Redux 

The topic of determining relationships between database tables is, I think, under-represented 

in the database literature and in database tutorials. I suspect that’s because relationships seem 

to be so intimately connected with the data itself that writers and teachers assume that 

nothing useful can be said. But I don’t think that’s true. Relationships occur in fairly regular, 

repeating patterns and – as we’ve seen here – most of them resolve into one-to-many 

relationships anyway. 

Even those elusive many-to-many relationships are built up from one-to-many relationships. 

Identifying them hinges on being able to see patterns between three different tables, some of 

which may or may not actually correspond to real-world entities. 

Regardless, relationships are the heart and soul of relational databases and learning to see 

relational patterns amid the chaos of data is one of the most important skills you can develop 

as a database designer. 


